Dimension reduction in regression without matrix inversion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension Reduction Regression in R

Regression is the study of the dependence of a response variable on a collection predictors collected in . In dimension reduction regression, we seek to find a few linear combinations , such that all the information about the regression is contained in these linear combinations. If is very small, perhaps one or two, then the regression problem can be summarized using simple graphics; for exampl...

متن کامل

Kernel Dimension Reduction in Regression∗

We present a new methodology for sufficient dimension reduction (SDR). Our methodology derives directly from the formulation of SDR in terms of the conditional independence of the covariate X from the response Y , given the projection of X on the central subspace [cf. J. Amer. Statist. Assoc. 86 (1991) 316–342 and Regression Graphics (1998) Wiley]. We show that this conditional independence ass...

متن کامل

Sliced Regression for Dimension Reduction

By slicing the region of the response (Li, 1991, SIR) and applying local kernel regression (Xia et al., 2002, MAVE) to each slice, a new dimension reduction method is proposed. Compared with the traditional inverse regression methods, e.g. sliced inverse regression (Li, 1991), the new method is free of the linearity condition (Li, 1991) and enjoys much improved estimation accuracy. Compared wit...

متن کامل

Dimension-Reduction in Binary Response Regression

The idea of dimension-reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a pre-specified model. Focusing on the central subspace, we investigate such “sufficient” dimension-reduction in regressions with a binary response. Three existing methods, SIR and pHd and SAVE, and one new method DOC are studied for thei...

متن کامل

Comment: Fisher Lecture: Dimension Reduction in Regression

This paper puts dimension reduction into the historical context of sufficiency, efficiency and principal component analysis, and opens up an avenue toward efficient dimension reduction via maximum likelihood estimation of inverse regression. I congratulate Professor Cook for this insightful and groundbreaking work. My discussion will focus on two points that explore and extend Cook’s ideas. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2007

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asm038